- ---CORRIGE DE L'EXERCICES SEANCE PRECEDENTE page 2----
 - ---COURS A REMPLIR correction page 2 -----

III. Se repérer dans un parallélépipède rectangle.

Dans un parallélépipède rectangle, un repère est formé par trois arêtes ayant un sommet commun appelé origine du repère.

Propriété et définition :

Tout point M d'un parallélépipède rectangle est repéré par trois nombres, ses coordonnées :

l'abscisse x_M , l'ordonnée y_M , l'altitude z_M . On note $M(x_M; y_M; z_M)$

Exemple:

Dans le repère ci-contre, O est l'origine du repère.

[OI) est l'axe des abscisses

OI=....

[OJ) est l'axe des ordonnées

OJ=....

[OK) est l'axe des altitudes

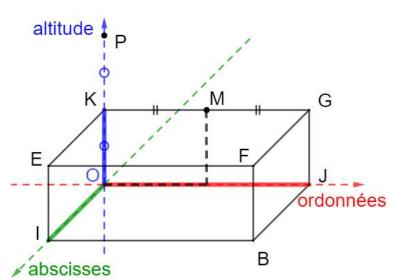
OK=...

On l'appelle le repère (O; I; J; K)

Coordonnées de certains points :

$$O(..;..;..)$$
 $I(..;..;..)$ $K(..;..;..)$

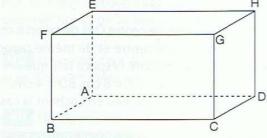
M(...; ...; ...) P(...; ...; ...)



(3)

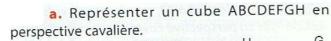
-----EXERCICE – corrigé en page 2------

a. Représenter en perspective cavalière un parallélépipède rectangle ABCDEFGH.

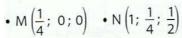


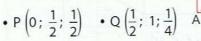
- **b.** Placer les points I, J, K dont les coordonnées dans le repère (A; B, D, E) sont :
- $I(\frac{1}{2}; 0; 1);$ $J(0; \frac{1}{2}; \frac{1}{2});$ $K(1; \frac{1}{2}; 0)$
- c. Placer le milieu M de l'arête [CD], le milieu N de l'arête [GH] et le point d'intersection P des diagonales de la face EFGH.

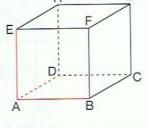
Quelles sont les coordonnées des points M, N, P?



b. Placer les points M, N, P, Q dont les coordonnées dans le repère (A; B, D, E) sont:

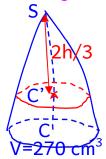






------CORRIGE DE L'EXERCICE SEANCE PRECEDENTE-----

Prof - En géométrie toujours faire un petit schéma



2) Coefficient de réduction :

Le coefficient de réduction est le rapport de deux longueurs qui se correspondent sur les deux solides. On prend ici les hauteurs SC et SC' des deux solides.

$$k = \frac{SC'}{SC} = \frac{\frac{2}{3}h}{h} = \frac{2}{3}$$

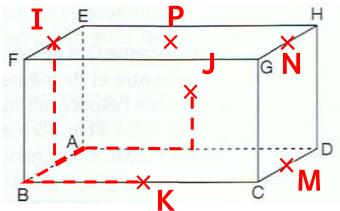
(Prof - on vérifie que ça donne un nombre inférieur à 1 sinon on s'est trompé et ce n'est pas une réduction)

3) Pour une réduction de rapport $k=\frac{2}{3}$, les volumes sont multipliés par $k^3=\frac{2^3}{3}$.

Ainsi, le volume V' du petit cône est égal à : $V' = 270 \times \frac{2^3}{3} = 80 \ cm^3$

-----CORRECTION COURS-----

[OI) est l'axe des abscisses	OI=1	Coordonnées de certains points :
[OJ) est l'axe des ordonnées	OJ=1	O(0;0;0) $I(1;0;0)$ $K(0;0;1)$
[OK) est l'axe des altitudes	OK=1	F(1;1;1) G(0;1;1) B(1;1;0)
		M(0;0,5;1) $P(0;0;2)$



M(
$$\frac{1}{2}$$
; 1; 0)
N($\frac{1}{2}$; 1; 1)
P($\frac{1}{2}$; $\frac{1}{2}$; 1)

